Технологии проекторов

В данной статье мы расскажем о технологиях формирования изображения — с использованием электронно-лучевых трубок, жидкокристаллических матриц или микромеханических устройств.

Электронно – лучевые трубки
Эта технология формирования изображения — пожалуй, самая старая и, казалось бы, знакомая всем. Ведь в ней картинка создается привычными всем кинескопами, то есть ЭЛТ. Но принципы работы ее заметно отличаются от домашних телевизоров. Во-первых, в таком проекторе сразу три электронно-лучевых трубки. Каждая из них отвечает за свой цвет — красный, синий или зеленый, из которых и формируется изображение. Нужный цвет обычно формируется цветофильтром, стоящим позади трубки. Выбор цветов основан на том, что именно из этих трех основных можно сформировать все остальные цвета спектра, и в системе цветности RGB (Red Green Blue) работает великое множество устройств, формирующих видеосигнал.
Световой поток из трех основных цветов проходит через относительно несложную систему линз и фокусируется на экране, создавая полноцветную картинку. Такие проекторы имеют отличную цветопередачу — технологии производства трубок отточены за десятилетия, а также отсутствие видимого зерна на картинке в связи с синтетическим характером каждого участка изображения. Также ЭЛТ-проекторы отлично передают и черный цвет, с чем у многих других систем явные проблемы.
Главными трудностями и недостатками системы являются большой размер и вес — каждая трубка имеет диаметр более 10 см и требует мощного охлаждения. Кроме того, качественное изображение формируется путем тщательного сведения трех картинок на одном экране, исключительно сложно в настройке и не позволяет быстро переместить проектор ни на сантиметр после настройки.
Лазерные проекторы
В некоторой степени наследниками электронно-лучевых трубок являются лазерные проекторы, в которых изображение формируется за счет излучения трех (иногда больше) лазеров. Наследниками — потому, что матрица лазеров формирует три луча тех же цветов, которые потом смешиваются. Изображение создается очень сложной системой фокусировки и развертки, в которой находится специальная система зеркал. По своей сути формирование изображения таким проектором подобно картинке на экране ЭЛТ телевизора — лазерный луч «обегает» проекционный экран сверху вниз до 50 раз в секунду, и глаз человека воспринимает получившуюся картину как единое целое. Реалистичное изображение формируется при этом практически на любой, в том числе и неровной, поверхности, а его характеристики достаточно высоки. С 2000 года, когда началось серийное производство таких проекторов, они стали выдавать более качественную картинку, но все еще остаются проблемы с цветопередачей, хотя изображение и обладает впечатляющими показателями контраста и яркости. Такие проекторы пока остаются в большей степени дорогими профессиональными инструментами — они излишне велики и потребляют много энергии. Однако их конструкция позволяет разделить излучающую батарею лазеров с большим тепловыделением и проецирующую часть. Кроме того, время жизни лазера заметно превосходит срок службы лампы традиционных проекторов, а энергии при сопоставимых параметрах яркости расходуется меньше. Ну, и самым главным достоинством лазерных проекторов является их способность создавать изображения на огромных экранах -диагональ может быть до нескольких десятков метров.
ЖК – матрицы
Традиционная и одна из самых старых технологий, применяющихся в проекторах — использование ЖК-матрицы «на просвет». Самая заслуженная и самая дешевая технология до сих пор остается самой распространенной — проекторы, созданные на основе одной LCD-матрицы неплохо подходят для образовательных целей, работы в презентационных комнатах при показе статичных слайдов и так далее. Однако в домашнем использовании они практически бесполезны, так как картинка, создаваемая ими, часто получается недостаточно четкой, к тому же движущиеся объекты выглядят не лучшим образом. Дело здесь в том, что свет лампы, проходя сквозь LCD-матрицу как через диафильм или кинопленку, а затем через объектив, проходит через множество слоев матрицы и цветового фильтра. Готовое изображение, проецирующееся на экран, в итоге часто имеет эффект «мозаичности». Кроме того, проблема черного цвета проявляется здесь в полной красе. Так как ЖК-матрицы работают на просвет, то создать абсолютно непрозрачный участок в условиях яркого и мощного освещения они попросту не способны. Поэтому и часто черный цвет получается больше похожим на серый. По этой же причине ЖК-матрицы с трудом справляются с полутонами — количество градаций серого цвета не так велико, как это необходимо. Более качественных результатов позволяет добиться технология, в которой вместо одной ЖК-матрицы используются сразу три.
3LCD
Технология трех ЖК-матриц была призвана стать ответом на появление DLP-проекторов, явно превосходящих по качеству изображения большинство устройств, основанных на жидкокристаллической матрице. Основным «двигателем» ассоциации компаний, активно работающих над популяризацией этой технологии, является один из самых крупных производителей ЖК-матриц в мире – компания Seiko Epson.
Три ЖК- матрицы позволяют создать изображение гораздо лучшего качества, чем при использовании одной матрицы, за счет разделения светового потока и прохождения его только через одну ЖК-панель, а не через три цветофильтра последовательно. Это гарантирует большую яркость и дополнительное качество картинки, особенно в плане четкости.
Система дихроичных зеркал разделяет свет на три составляющих цвета, пропуская каждый через свою ЖК-матрицу, а потом призма собирает все три изображения в одну картинку. Однако и в них сохраняется проблема черного цвета — он опять оказывается скорее серым, чем черным.
Такая технология обладает даже некоторым преимуществом перед однокристальными DLP-проекторами, в которых цвет создается путем последовательного наложения цветов. В 3LCD-проекторах цвет создается одновременно и без использования движущихся частей.
Микрозеркальная технология DLP
Самой бурно развивающейся технологией, на которой строятся проекторы, можно считать микрозеркальную или DLP-технологию. При ее использовании свет мощной лампы отражается от специального чипа (Digital Mirror Device), содержащего тысячи микрозеркал, каждое из которых отвечает за свой пиксель изображения. Матрица с зеркалами очень миниатюрна, обычно около одного дюйма, и именно на нее и на систему управления приходится большая часть стоимости таких проекторов и телевизоров. Каждое из миллионов микрозеркал управляется индивидуально, и в итоге создается очень четкая и ясная картинка, лишенная артефактов, присущих жидким кристаллам. Разработчиком этой технологии и поставщиком всех DMD-матриц и схем управления ими является американская компания Texas Instruments.
Свет на микрозеркала DMD-матрицы попадает через специальный вращающийся светофильтр, имеющий три или четыре грани. На трехцветном светофильтре они окрашены в красный, зеленый и синий цвета, а на четырехгранном добавлена прозрачная грань, оказывающаяся полезной тогда, когда имеются большие неокрашенные участки изображения. Скорость смены всех сочетаний настолько высока, что человеческим взглядом отмечается только цельная картинка, очень яркая и четкая. В последнее время приобретают популярность системы, в которых применяется цветовое колесо с шестью или семью сегментами — качество картинки от этого заметно улучшается и пропадает эффект «радуги», возникающий на резких цветовых границах изображения.
Технология D-ILA (Digital Direct Drive Image Light Amplifier)
Технология D-ILA (Digital Direct Drive Image Light Amplifier) является коммерческим развитием технологии LCOS (Liquid Crystal on Silicon — жидких кристаллов на кремнии) и активно развивается разными производителями, в том числе и компанией JVC, которая выпускает на ее основе проекционные системы. Изображение в этой технологии формируется жидкими кристаллами, однако работает она не на просвет, как привычные ЖК-матрицы, а на отражение, и иногда, для упрощения понимания ее сути, технология называется «отражающими жидкокристаллическими панелями». Главное отличие от обычной ЖК-матрицы в том, что вся электронная «начинка» расположена за слоем жидких кристаллов под отражающими электродами, а не между ячейками. Это обеспечивает лучший коэффициент заполнения — изображение формируется на большей площади матрицы, и незадействованной остается минимальная площадь. Световой поток формируется несильным источником света, а потом усиливается специальной лампой, отчего и происходит название технологии.

Наши новости

Решения Beckhoff : возможны варианты

Немецкая компания Beckhoff продвигает на мировом рынке одноимённую концепцию и систему автоматизации промышленных объектов и...

Подробнее »

Зонировать так зонировать!

Зонирование — архитектурный термин, означающий разделение интерьера на несколько частей, как правило различных по своему...

Подробнее »

Умный дом за малые деньги

В понимании российского потребителя прочно укоренился тезис "умный дом – это очень дорого". Однако в...

Подробнее »

Самые "умные" здания мира

Бум "интеллектуализации" зданий катится по миру: Япония, США, Европа – в развитых странах "неумные" дома...

Подробнее »

Автоматизация зданий на базе INSTABUS EIB

Высокие требования к гибкости и удобству электрического оборудования, связанные со стремлением минимизировать энергопотребление, привели к...

Подробнее »
© Умный дом: система умный дом, автоматизация зданий, интеллектуальное здание, цифровой дом, домашняя автоматизация, интеллектуальный дом